A preradical which satisfies the property that every weakly divisible module is divisible
نویسندگان
چکیده
منابع مشابه
Every Sum System Is Divisible
We show that every sum system is divisible. Combined with B. V. R. Bhat and R. Srinivasan’s result, this shows that every product system arising from a sum system (and every generalized CCR flow) is either of type I or type III. A necessarily and sufficient condition for such a product system to be of type I is obtained.
متن کاملRings for which every simple module is almost injective
We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...
متن کاملrings for which every simple module is almost injective
we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...
متن کاملModules for which every non-cosingular submodule is a summand
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
متن کاملDivisible Groups Derived from Divisible Hypergroups
The purpose of this paper is to define a new equivalence relation τ∗ on divisible hypergroups and to show that this relation is the smallest strongly regular relation (the fundamental relation) on commutative divisible hypergroups. We show that τ∗ ̸= β∗, τ∗ ̸= γ∗ and, we define a divisible hypergroup on every nonempty set. We show that the quotient of a finite divisible hypergroup by τ∗ is the tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1981
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496159326